Table of Contents

go () at () % speed for () seconds

Description

The block moves the Quarky robot in the specified direction for the specified time. The direction can be “FORWARD”, “BACKWARD”, “LEFT”, and “RIGHT”.

Example

Make-a-Square (1)
The example demonstrates how to make a square with Quarky robot.

Script

Note: You have to change the left turn time to make sure that the robot turns 90 degrees.

Output

Make-a-Square

Read More
The example demonstrates how to make a vertical robot pet that senses the hand on the IR sensor and acts accordingly.

Script

Alert: You need to calibrate the IR sensor values to make this program run perfectly.

Output

Read More
Learn how to code logic for speech recognized control of Mecanum with this example block code. You will be able to direct your own Mecanum easily by just speaking commands.

Introduction

A speech recognized controlled Mecanum robot is a robot that can recognize and interpret our speech, verbal commands, given by a human. The code uses the speech recognition model that will be able to record and analyze your speech given and react accordingly on the Mecanum.

Speech recognition robots can be used in manufacturing and other industrial settings to control machinery, perform quality control checks, and monitor equipment.

They are also used to help patients with disabilities to communicate with their caregivers, or to provide medication reminders and other health-related information.

Main Code:

Logic

  1. Firstly, the code initializes the Mecanum pins and starts recording the microphone of the device to store the audio command of the user.
  2. The code then checks conditions whether the command included the word “Forward” or not. You can use customized commands and test for different conditions on your own.
  3. If the first condition stands false, the code again checks for different keywords that are included in the command.
  4. When any condition stands true, the robot will align itself accordingly and move in that direction of the respective command.

Output

Read More
This project demonstrates how to use Machine Learning Environment to make a machine–learning model that identifies the hand gestures and makes the Mecanum robot move accordingly.

This project demonstrates how to use Machine Learning Environment to make a machinelearning model that identifies the hand gestures and makes the Mecanum move accordingly.

We are going to use the Hand Classifier of the Machine Learning Environment. The model works by analyzing your hand position with the help of 21 data points. We will add in total 8 different classes to operate the different motions of the Mecanum Robot with the help of the ML Environment of the Pictoblox Software.

Hand Gesture Classifier Workflow

Follow the steps below:

  1. Open PictoBlox and create a new file.
  2. Select the coding environment as appropriate Coding Environment.
  3. Select the “Open ML Environment” option under the “Files” tab to access the ML Environment.
  4. Click on “Create New Project“.
  5. A window will open. Type in a project name of your choice and select the “Hand Gesture Classifier” extension. Click the “Create Project” button to open the Hand Pose Classifier window.
  6. You shall see the Classifier workflow with two classes already made for you. Your environment is all set. Now it’s time to upload the data.

Class in Hand Gesture Classifier

There are 2 things that you have to provide in a class:

  1. Class Name: It’s the name to which the class will be referred as.
  2. Hand Pose Data: This data can either be taken from the webcam or by uploading from local storage.

Note: You can add more classes to the projects using the Add Class button.
Adding Data to Class

You can perform the following operations to manipulate the data into a class.

  1. Naming the Class: You can rename the class by clicking on the edit button.
  2. Adding Data to the Class: You can add the data using the Webcam or by Uploading the files from the local folder.
    1. Webcam:
Note: You must add at least 20 samples to each of your classes for your model to train. More samples will lead to better results.
Training the Model

After data is added, it’s fit to be used in model training. In order to do this, we have to train the model. By training the model, we extract meaningful information from the hand pose, and that in turn updates the weights. Once these weights are saved, we can use our model to make predictions on data previously unseen.

The accuracy of the model should increase over time. The x-axis of the graph shows the epochs, and the y-axis represents the accuracy at the corresponding epoch. Remember, the higher the reading in the accuracy graph, the better the model. The range of the accuracy is 0 to 1.

Testing the Model

To test the model, simply enter the input values in the “Testing” panel and click on the “Predict” button.

The model will return the probability of the input belonging to the classes.

Export in Block Coding

Click on the “Export Model” button on the top right of the Testing box, and PictoBlox will load your model into the Block Coding Environment if you have opened the ML Environment in the Block Coding.

Logic

The mecanum will move according to the following logic:

  1. When the forward gesture is detected – Mecanum will move forward.
  2. When the backward gesture is detected – Mecanum will move backwards.
  3. When the Lateral Left gesture is detected – Mecanum will move towards the left direction laterally with the help of its omnidirectional wheels.
  4. When the Lateral Right gesture is detected – Mecanum will move towards the right direction laterally with the help of its omnidirectional wheels.
  5. When the Stop gesture is detected – Mecanum will stop moving.
  6. When the Normal Left gesture is detected – Mecanum will rotate in the left direction.
  7. When the Normal Right gesture is detected – Mecanum will rotate in the right direction.
  8. When the Circular Motion gesture is detected – Mecanum will move in a lateral arc.

Code

Initialization

Main Code

Output

Forward-Backward Motions:

Lateral Right-Left Motions:

Circular Right-Left Motions:

Lateral Arc Motion:

Read More
Explore the surroundings with our obstacle avoidance Mars Rover that uses an ultrasonic sensor to detect and avoid obstacles. Learn how the robot moves, detects obstacles, and navigates its way through them.

This project of obstacle avoidance is for a robot that will move around and look for obstacles. It uses an ultrasonic sensor to measure the distance. If the distance is less than 20 cm, it will stop and look in both directions to see if it can move forward. If it can, it will turn left or right. If not, it will make a U-turn.

Logic

  1. This code is making a robot move around and explore its surroundings. It has an ultrasonic sensor that can measure the distance between objects.
  2. We will first initialize the servos of the Mars Rover with the block “Set head pins()”.
  3. Then we will make all the servos rotate to 90 degrees if they are not initialized.
  4. Thereafter we will initialize the ultrasonic sensors and define the minimum and maximum distance variables.
  5. The main logic of the code is that it first checks whether the distance is less than the minimum distance. If it is, the head servo will move to 45 degrees and check again if the distance is greater than the maximum distance, hence moving in the right direction.
  6. The robot with the help of the head servo, will check the distance for the conditions 90 degrees, 45 degrees, 135 degrees, 0 degrees and 180 degrees in the same order as stated.
  7. Whenever the distance measured will be less than minimum distance the head servo will change the direction to the next set of degree to check distance.
  8. In the last case scenario where all the angles contain obstacles as such, in that case the robot will change its direction to reverse by rotating to 180 degrees. By this way the robot will be able to navigate its own way through each and every obstacles.

Code:

Main Functions:

 

Final Main Logic:

Output

 

Read More
In this activity, learn how to create a new Machine Learning model that will be able to identify and detect different types of hand poses and that can help us to control the Mecanum Gripper Robot.

In this activity, we will try to create a new Machine Learning model that will be able to identify and detect different types of hand poses and that can help us to control the Mecanum Gripper Robot. This activity can be quite fun and by knowing the process, you can develop your own customized hand pose classifier model easily!

We will use the same model that we have created in the previous Hand Pose Controlled Mecanum model to avoid any misdirection and confusion.

Note: You can always create your own model and use it to perform any type of functions as per your choice. This example proves the same point and helps you understand well the concept of Machine Learning models and environment.

Hand Gesture Classifier Workflow

Follow the steps below:

  1. Open PictoBlox and create a new file.
  2. Select the Block coding environment as appropriate Coding Environment.
  3. Select the “Open ML Environment” option under the “Files” tab to access the ML Environment.
  4. Click on “Create New Project“.
  5. A window will open. Type in a project name of your choice and select the “Hand Gesture Classifier” extension. Click the “Create Project” button to open the Hand Pose Classifier window.
  6. You shall see the Classifier workflow with two classes already made for you. Your environment is all set. Now it’s time to upload the data.

Class in Hand Gesture Classifier

There are 2 things that you have to provide in a class:

  1. Class Name: It’s the name to which the class will be referred as.
  2. Hand Pose Data: This data can either be taken from the webcam or by uploading from local storage.

Note: You can add more classes to the projects using the Add Class button.
Adding Data to Class

You can perform the following operations to manipulate the data into a class.

  1. Naming the Class: You can rename the class by clicking on the edit button.
  2. Adding Data to the Class: You can add the data using the Webcam or by Uploading the files from the local folder.
    1. Webcam:
Note: You must add at least 20 samples to each of your classes for your model to train. More samples will lead to better results.
Training the Model

After data is added, it’s fit to be used in model training. In order to do this, we have to train the model. By training the model, we extract meaningful information from the hand pose, and that in turn updates the weights. Once these weights are saved, we can use our model to make predictions on data previously unseen.

The accuracy of the model should increase over time. The x-axis of the graph shows the epochs, and the y-axis represents the accuracy at the corresponding epoch. Remember, the higher the reading in the accuracy graph, the better the model. The range of the accuracy is 0 to 1.

Testing the Model

To test the model, simply enter the input values in the “Testing” panel and click on the “Predict” button.

The model will return the probability of the input belonging to the classes.

Export in Block Coding

Click on the “Export Model” button on the top right of the Testing box, and PictoBlox will load your model into the Block Coding Environment if you have opened the ML Environment in the Block Coding.

Logic

The mecanum will move according to the following logic:

  1. If the detected class is “forward”, we will make the Mecanum move forward.
  2. When the backward gesture is detected – Mecanum will move backwards.
  3. When the Lateral Left gesture is detected – Mecanum will move towards the left direction laterally with the help of its omnidirectional wheels.
  4. When the Lateral Right gesture is detected – Mecanum will move towards the right direction laterally with the help of its omnidirectional wheels.
  5. When the Normal Right gesture is detected – Mecanum will rotate on a single point towards the right direction.
  6. When the Normal Left gesture is detected – Mecanum will rotate on a single point towards the left direction.
  7. When the “Stop” class gesture is detected, we will use the gripper functions of the Mecanum and Pick the object.
  8. When the “Circular Motion ” class is detected, we will use the gripper functions of the Mecanum and Drop the object by opening the arms of the gripper robot.

Code

Initialization

Main Code

 

Output

Forward-Backward Motion:

Circular Right-Left Motion:

Lateral Right-Left Motions:

Gripper Mechanism with Hand Gestures:

Read More
Learn how to code logic for speech recognized control of Mars Rover with this example block code. You will be able to direct your own Mars Rover easily by just speaking commands.

Learn how to code logic for speech recognized control of Mars Rover with this example block code. You will be able to direct your own Mars Rover easily by just speaking commands.

Introduction

A speech recognized controlled Mars Rover robot is a robot that can recognize and interpret our speech, verbal commands, given by a human. The code uses the speech recognition model that will be able to record and analyze your speech given and react accordingly on the Mars Rover.

Speech recognition robots can be used in manufacturing and other industrial settings to control machinery, perform quality control checks, and monitor equipment.

They are also used to help patients with disabilities to communicate with their caregivers, or to provide medication reminders and other health-related information.

Main Code:

Logic

  1. Firstly, the code initializes the Mars Rover pins and starts recording the microphone of the device to store the audio command of the user.
  2. The code then checks conditions whether the command included the word “Go” or not. You can use customized commands and test for different conditions on your own.
  3. If the first condition stands false, the code again checks for different keywords that are included in the command.
  4. When any condition stands true, the robot will align itself accordingly and move in that direction of the respective command.

Output

Forward-Backward Motions:

Right-Left Motions:

Read More
In this activity, learn how to create a new Machine Learning model that will be able to identify and detect different types of hand poses and that can help us to control the Mecanum Pick and Place Robot.

In this activity, we will try to create a new Machine Learning model that will be able to identify and detect different types of hand poses and that can help us to control the Mecanum Pick and Place Robot. This activity can be quite fun and by knowing the process, you can develop your own customized hand pose classifier model easily!

We will use the same model that we have created in the previous Hand Pose Controlled Mecanum model to avoid any misdirection and confusion.

Note: You can always create your own model and use it to perform any type of functions as per your choice. This example proves the same point and helps you understand well the concept of Machine Learning models and environment.

Hand Gesture Classifier Workflow

Follow the steps below:

  1. Open PictoBlox and create a new file.
  2. Select the Block coding environment as appropriate Coding Environment.
  3. Select the “Open ML Environment” option under the “Files” tab to access the ML Environment.
  4. Click on “Create New Project“.
  5. A window will open. Type in a project name of your choice and select the “Hand Gesture Classifier” extension. Click the “Create Project” button to open the Hand Pose Classifier window.
  6. You shall see the Classifier workflow with two classes already made for you. Your environment is all set. Now it’s time to upload the data.

Class in Hand Gesture Classifier

There are 2 things that you have to provide in a class:

  1. Class Name: It’s the name to which the class will be referred as.
  2. Hand Pose Data: This data can either be taken from the webcam or by uploading from local storage.

Note: You can add more classes to the projects using the Add Class button.
Adding Data to Class

You can perform the following operations to manipulate the data into a class.

  1. Naming the Class: You can rename the class by clicking on the edit button.
  2. Adding Data to the Class: You can add the data using the Webcam or by Uploading the files from the local folder.
    1. Webcam:
Note: You must add at least 20 samples to each of your classes for your model to train. More samples will lead to better results.
Training the Model

After data is added, it’s fit to be used in model training. In order to do this, we have to train the model. By training the model, we extract meaningful information from the hand pose, and that in turn updates the weights. Once these weights are saved, we can use our model to make predictions on data previously unseen.

The accuracy of the model should increase over time. The x-axis of the graph shows the epochs, and the y-axis represents the accuracy at the corresponding epoch. Remember, the higher the reading in the accuracy graph, the better the model. The range of the accuracy is 0 to 1.

Testing the Model

To test the model, simply enter the input values in the “Testing” panel and click on the “Predict” button.

The model will return the probability of the input belonging to the classes.

Export in Block Coding

Click on the “Export Model” button on the top right of the Testing box, and PictoBlox will load your model into the Block Coding Environment if you have opened the ML Environment in the Block Coding.

Logic

The mecanum will move according to the following logic:

  1. If the detected class is “forward”, we will make the Mecanum move forward.
  2. When the backward gesture is detected – Mecanum will move backwards.
  3. When the Lateral Left gesture is detected – Mecanum will move towards the left direction laterally with the help of its omnidirectional wheels.
  4. When the Lateral Right gesture is detected – Mecanum will move towards the right direction laterally with the help of its omnidirectional wheels.
  5. When the Normal Right gesture is detected – Mecanum will rotate on a single point towards the right direction.
  6. When the Normal Left gesture is detected – Mecanum will rotate on a single point towards the left direction.
  7. When the Stop gesture is detected – Mecanum will stop and initiate the Pick Mechanism using the Pick function.
  8. When the Circular Motion gesture is detected – Mecanum will initiate the Place Mechanism using the Place function.

Code

Initialization

Main Code

Output

Forward-Backward Motion:

Circular Right-Left Motion:

Lateral Right-Left Motion:

Pick and Place Mechanism with Hand Pose:

Read More
All articles loaded
No more articles to load