Table of Contents

analyse image from ()

Description

To execute face detection, we use analyse image from () blocks.

analyse image from ()

You can input the image in the following ways:

  1. Camera feed
  2. Stage

This block analyses the image and saves the face information locally, which can be accessed using other blocks similar to computer vision.

You have to run this block every time you want to analyze a new image from the camera or stage.

Example

The example shows how to create a face filter with Face Detection. It also includes how to make the filter tilt with face angles.

Script

Exmaple

Read More
Learn how to code logic for video input detection with this example block code. You will be able to direct your own Mars Rover easily by just showing signs through the camera input.

Introduction

A sign detector Mars Rover robot is a robot that can recognize and interpret certain signs or signals, such as hand gestures or verbal commands, given by a human. The robot uses sensors, cameras, and machine learning algorithms to detect and understand the sign, and then performs a corresponding action based on the signal detected.

These robots are often used in manufacturing, healthcare, and customer service industries to assist with tasks that require human-like interaction and decision making.

Code

Initializing the Functions:

Main Code

Logic

  1. Firstly, the code sets up the stage camera to look for signs and detects and recognizes the signs showed on the camera.
  2. Next, the code starts a loop where the stage camera continuously checks for the signs.
  3. Finally, if the robot sees certain signs (like ‘Go’, ‘Turn Left’, ‘Turn Right’, or ‘U Turn’), it moves in a certain direction (forward, backward, left, or backward) based on the respective signs.
  4. This can help the Mars Rover to manoeuvre through the terrain easily by just showing signs on the camera.

Output

Forward-Backward Motions:

Right-Left Motions:

Read More
Learn about face-tracking, and how to code a face-tracking Quadruped robot using sensors and computer vision techniques.

Introduction

A face-tracking robot is a type of robot that uses sensors and algorithms to detect and track human faces in real-time. The robot’s sensors, such as cameras or infrared sensors, capture images or videos of the surrounding environment and use computer vision techniques to analyze the data and identify human faces.
Face-tracking robots have many potential applications, including in security systems, entertainment, and personal robotics. For example, a face-tracking robot could be used in a museum or amusement park to interact with visitors, or in a home as a companion robot that can recognize and follow the faces of family members.

One of the most fascinating activities is face tracking, in which the Quadruped can detect a face and move its head in the same direction as yours. How intriguing it sounds, so let’s get started with the coding for a face-tracking Quadruped robot.

Logic

  1. If the face is tracked at the center of the stage, the Quadruped should be straight.
  2. As the face moves to the left side, the Quadruped will also move to the left side.
  3. As the face moves to the right side, the Quadruped will also move to the right side.

Code Explain

  1. Drag and drop the when green flag clicked block from the Events palette.
  2. Then, add a turn () video on stage with () % transparency block from the Face Detection extension and select one from the drop-down. This will turn on the camera.
  3. Add the set pins FR Hip () FL Hip () FR Leg () FL Leg() BR Hip () BL Hip () BR Leg () BL Leg () block from the Humanoid extension.
  4. Click on the green flag and your camera should start. Make sure this part is working before moving further.
  5. Add the forever block below turn () video on stage with () % transparency from the Control palette.
  6. Inside the forever block, add an analyzed image from the () block. This block will analyze the face the camera detects. Select the camera from the dropdown.
  7. Create a variable called Angle that will track the angle of the face. Based on the angle, the robot will move to adjust its position.
  8. Here comes the logical part as in this, the position of the face on the stage matters a lot. Keeping that in mind, we will add the division () / () block from the Operator palette into the scripting area.
  9. Place get () of the face () at the first place of addition () + (), and 3 at the second place. From the dropdown select X position.
  10. If the angle value is greater than 90, the Humanoid will move left at a specific speed. If the angle is less than 90, the Humanoid will move right at a specific speed. If the angle is exactly 90, the Humanoid will return to its home position.
Block Explained

  1. Create a variable called Angle and assign it the value of the face’s position.
  2. At the center of the stage, we will get the X position value which is zero.
  3. As we move to the left side the X position value will give you the negative value and as we move to the right side the X position value will give you the positive value.
  4. The x position value is divided by 3 which gives precise positioning.
  5. To set the angle at 90 when the face is at the center of the stage we have added 90 to the X position value.
  6. As we move to the left side the angle value will get decreased as the X position value is going in negative.
  7. As we move to the right side the angle value will get increased as the X position value is going in positive.

Code

Output

Our next step is to check whether it is working right or not. Whenever your face will come in front of the camera, it should detect it and as you move to the right or left, the head of your  Quadruped robot should also move accordingly.

Read More
All articles loaded
No more articles to load