Table of Contents

isobjectdetected()

Function Definition: isobjectdetected(object_name = "Pizza")

Parameters

NameTypeDescriptionExpected ValuesDefault Value
object_namestringThe object name which you want to check for."Spades", "Diamonds", "Clubs", "Hearts", "PizzaSlice", "Pizza", "Tree", "Home", "Hospital", "Bomb", "Hazel", or "John""Pizza"

Description

The function returns whether the specified object card is detected in the analysis or not:

  1. Spades
  2. Diamonds
  3. Clubs
  4. Hearts
  5. PizzaSlice
  6. Pizza
  7. Tree
  8. Home
  9. Hospital
  10. Bomb
  11. Hazel
  12. John

Example

Learn about AI-based face expression detection, a technology that uses artificial intelligence algorithms and computer vision techniques to analyze images or videos of human faces and recognize emotions or expressions.

Introduction

AI-based face expression detection refers to the use of artificial intelligence algorithms and computer vision techniques to analyze images or videos of human faces and recognize the emotions or expressions being displayed. The technology can detect and analyze subtle changes in facial features, such as eye movement, mouth shape, and eyebrow position, to determine whether a person is happy, sad, angry, surprised, or expressing other emotions.

Discover the various fields that utilize this technology, including psychology, marketing, and human-computer interaction. Additionally, read about the logic and code behind face detection with a camera feed, including the initialization of parameters, face detection library, loop execution, and if-else conditions. Explore how the technology continuously analyzes emotions, and how the humanoid responds with different facial expressions and movements.

Code

sprite = Sprite('Tobi')

fd = FaceDetection()

quarky = Quarky()

import time

humanoid = Humanoid(7, 2, 6, 3, 8, 1)

# Turn the video ON with 0% transparency
fd.video("ON", 0)
fd.enablebox()

# Run this script forever
while 1:
  fd.analysecamera()          # Analyse image from camera 
  sprite.say(fd.expression()) # Say the face expressions
  
  if fd.isexpression(1, "happy"): # if face expression is happy
    quarky.showemotion("happy")   # show happy emotion on Quarky
    humanoid.action("dance2", 1000, 1)
    
  if fd.isexpression(1, 'sad'):
    quarky.showemotion("crying")
    humanoid.action("updown", 1000, 1)
    
  if fd.isexpression(1, 'surprise'):
    quarky.showemotion('surprise')
    humanoid.action("moonwalker", 1000, 1)
    
  if fd.isexpression(1, 'angry'):
    quarky.showemotion('angry')    
    humanoid.action("flapping2", 1000, 1)
  else:
    humanoid.home()
    
# Comment the above script, uncomment the below script and 
# run this script to clear the stage and quarky display

fd.disablebox()
fd.video("off")    
quarky.cleardisplay()

Logic

The example demonstrates how to use face detection with a camera feed. Following are the key steps happening:

  1. The code is using face detection to recognize facial expressions and control a humanoid and a display device called Quarky accordingly.
  2. Then, the program turns on the video with 0% transparency and enables the bounding box for face detection.
  3. The code then enters an infinite loop where it continuously analyzes the image from the camera using face detection and says the detected facial expressions.
  4. The code then checks if the expression is happy, sad, surprised, or angry using the if statement. If the expression is happy, the Quarky device displays a happy emotion, and the humanoid performs the “dance2” action for specific time. Similarly, for sad, surprised, and angry expressions, Quarky displays the respective emotion, and the humanoid performs the associated action.
  5. If no facial expression is detected, the humanoid is set to its “home” position. Finally, if the program needs to be stopped.

Output

Read More
All articles loaded
No more articles to load