go () at () % speed for () seconds

Description

The block makes the robot move in the specified direction with the specified speed for the specified time and then stop automatically.

Example

Learn how to control the Mecanum using PictoBlox with keyboard inputs. Make the Mecanum move forward, backward, turn left, and turn right along with unique lateral motions!

In this activity, we will make the computer program that controls the Mecanum Robot. It’s like a remote-control car. You can press different keys on the keyboard to make the Mecanum move forward, backward, left and right.

The Quarky Mecanum Wheel Robot is a type of robot that uses a special type of wheel to move. The wheel is made of four rollers mounted at 45-degree angles to the wheel‘s hub. Each roller has its own motor and can spin in either direction. This allows the wheel to move in any direction, making it an ideal choice for navigating around obstacles and tight spaces. The mecanum wheel robot can also turn on the spot, allowing it to make sharp turns without having to reverse direction.

 

Coding Steps

Follow the steps:

  1. Open a new project in PictoBlox.
  2. Connect Quarky to PictoBlox.
  3. Click on the Add Extension button and add the Quarky Mecanum extension.
  4. Now we will first initialize the Mecanum robots and the servos before starting the main code.
  5. The main code will consist nested if-else conditions that will check specific conditions on which key is pressed, and will react accordingly. We will use the arrow keys for basic movements (Forward, Backward, Left Right) and the keys “a” for lateral left movement and “d” for lateral right movement.

Code

Output

Forward-Backward Motion:

Lateral Right-Left Motion:

Circular Right-Left Motion:

Read More
Learn to move your Quarky Mecanum Wheel Robot in a square and make an axe figure with PictoBlox. Use the arrow keys to activate the custom movements and watch your robot move in the desired direction!

In this activity, we will create a custom activity where you will be able to move the Mecanum robot in a square effortlessly along with making an Axe type figure.

The Quarky Mecanum Wheel Robot is a type of robot that uses a special type of wheel to move. The wheel is made of four rollers mounted at 45- degree angles to the wheel’s hub. Each roller has its own motor and can spin in either direction. This allows the wheel to move in any direction, making it an ideal choice for navigating around obstacles.

Coding Steps

Follow the steps:

  1. Open a new project in PictoBlox and select Block Coding Environment.
  2. Connect Quarky to PictoBlox.
  3. Click on the Add Extension button and add the Quarky Mecanum extension.
  4. Now we will first initialize the Mecanum robots and the servos before starting the main code.
  5. Here there are two parts specifically : To make a Square and To make an Axe

To make a Square (Logic):

The main steps would include to display the lights in arrow forms before implementing the specific move. The moves would be implemented in the following order:

Forward -> Lateral Right -> Backward -> Lateral Left.

We will display the arrows with the help of Quarky LED’s and implement the code.

Example of arrow:

Code for Square Motion:

To make an Axe (Logic):

The main steps would include to display the lights in arrow forms before implementing the specific move. The moves would be implemented in the following order:

Forward ( 2 steps ) -> Lateral Left ( 1 step ) -> Backward Right ( 1 step ) -> Backward ( 1 step )

We will display the arrows with the help of Quarky LED’s and implement the code.

Code for Axe Motion

Main Code

Now we will keep a specific condition on when to activate the Square Motion and when to activate the Axe Motion.

We will use the if-else conditions where on pressing the “up” arrow key, we will initiate the Square Motion and on pressing the “down” arrow key, we will initiate the Axe Motion with the help of Mecanum Robot.

Final Output

Square Motion:

Axe Motion:

Read More
Learn how to code logic for video input detection with this example block code. You will be able to direct your own Mecanum easily by just showing signs through the camera input.

Introduction

A sign detector Mecanum robot is a robot that can recognize and interpret certain signs or signals, such as hand gestures or verbal commands, given by a human. The robot uses sensors, cameras, and machine learning algorithms to detect and understand the sign, and then performs a corresponding action based on the signal detected.

These robots are often used in manufacturing, healthcare, and customer service industries to assist with tasks that require human-like interaction and decision making.

Code

Initialization:

Main Code

Logic

  1. Firstly, the code sets up the stage camera to look for signs and detects and recognizes the signs showed on the camera.
  2. Next, the code starts a loop where the stage camera continuously checks for the signs.
  3. Finally, if the robot sees certain signs (like ‘Go’, ‘Turn Left’, ‘Turn Right’, or ‘U Turn’), it moves in a certain direction (forward, backward, left, or backward) based on the respective signs.
  4. This can help the Mecanum to manoeuvre through the terrain easily by just showing signs on the camera.

Output

Forward Motion:

Right-Left Motions:

Read More
Learn to control Mecanum Pick and Place Robot using Dabble App on your device with customized functions for different motions and activities.

Introduction

In this activity, we will control the Mecanum Pick and Place according to our needs using the Dabble application on our own Devices.

We will first understand how to operate Dabble and how to modify our code according to the requirements. The following image is the front page of the Dabble Application.

Select the Gamepad option from the Home Screen and we will then use the same gamepad to control our Mecanum Pick and Place.

Code

The following blocks represent the different functions that are created to control the Mecanum Pick and Place for different types of motions. We will use the arrow buttons to control the basic movements.( Forward, Backward, Lateral Left, Lateral Right ). We will use custom functions to control the Pick and Place actions. We will use the Triangle button to pick with the help of arms and the Circle button to initiate the placing action (dropping down the object). We will use the Cross button to rotate to the right direction and we will use the Square button to rotate to the left direction. We can use the Select button to stop the Mecanum whenever possible.

Note: You can always customize each and every function and button, and make your own activities easily. You will have to add the extensions of Mecanum and also of Dabble to access the blocks. To access the basic extensions required, make sure to select the Board as Quarky first.

Initialization

Main Code

You will have to connect the Quarky with the Dabble Application on your device. Make sure Bluetooth is enabled on the device before connecting. Connect the Mecanum to the Dabble application after uploading the code. You will be able to connect by clicking on the plug option in the Dabble Application as seen below. Select that plug option and you will find your Quarky device. Connect by clicking on the respective Quarky.

Important Notes

  1. The code will only run by uploading the code by connecting the Mecanum with the help of a C-Type Cable to the Laptop.
  2. You will be able to upload the Python Code by selecting the Upload option beside the Stage option.
  3. There may be a case where you will have to upload the firmware first and then upload the code to the Mecanum. You will be able to upload the firmware in Quarky with the help of the following steps:
    1. Select the Quarky Palette from the Block Section.
    2. Select the Settings button on top of the palette.
    3. In the settings dialog box, scroll down, and select the Upload Firmware option. This will help you to reset the Quarky if any previous code was uploaded or not.
  4. After the Firmware is uploaded, click on the “Upload Code” option to upload the code.
  5. You will have to add the block “When Quarky Starts Up” rather than the conventional “When Green Flag is Clicked” for the code to run.

Output

Forward-Backward Motion:

Circular Right-Left Motion:

Lateral Right-Left Motion:

Pick and Place Mechanism with Dabble:

Read More
All articles loaded
No more articles to load
Table of Contents