
Session 7

Loops in Python –
While Loop

1

1. Introduction to loops

2. While Loop

3. Activity:

1. Number counter using Quarky

Topics covered

2

In this activity, you will be introduced to the

first of the two types of loops,

Introduction to loops

3

• In programming, repetition of a line or a block of code is also known as
iteration.

• A loop is an algorithm that executes a block of code multiple times till the time
a specified condition is met.

Increment Loops :

• Loops provide the facility to execute a block of code repetitively, based on a
condition.

• To run a block of code in a loop, one needs to set a condition and set its
number of iterations.

• Each time the condition is true, and the block of code executes once, it is
counted to be one iteration.

• Before moving to the next iteration, one needs to increase the count of
iterations to two. This is called incrementing a loop.

Introduction to Loops

4

• For example, if you need to print numbers 0 to 4,
you will execute a block of code with the Print
statement in five iterations.

• With each passing iteration, you will increment the
count by one.

Increment Loops

5

Let us understand loops with a flowchart:

• Here every time the condition (Count < 5) is true, “Print count” gets executed.
So, we do not have to write the “Print” statement multiple times. The loop
takes care of that.

• What is important to note is that every loop must have an exit condition. In our
example, the exit condition is (Count < 5). The loop will exit when the condition
becomes false.

• Also, most loops will have a variable that is called a counter variable in
programming terms. The counter variable keeps track of how many times the
loop is executed. In this example, the “count” variable is our counter.

Increment Loops

6

Below are the two important benefits of loops:

• Reduces lines of code

• Code becomes easier to understand

Different types of loops

Loops make our code more manageable and organized. Let us now see what the
different types of loops are:

• While Loop

• For Loop

• Nested Loop

Benefits of Loops

7

• The While loop can execute a set of
commands till the condition is true.

• While Loops are also called
conditional loops.

• Once the condition is met then the
loop is finished.

The syntax of the while loop is:

While Loop

while condition: # condition is Boolean
expression returning True or False
STATEMENTs BLOCK 1

8

Example :

While Loop

sprite = Sprite('Tobi’)

sprite.input("Enter the number")
N = int(sprite.answer())

i = 1

while (i <= 10):
sprite.say(str(N) + " * " + str(i) + " = " + str(N*i), 1)
i = i + 1

sprite.say("I am out of the loop!")

9

Output

10

ACTIVITYACTIVITYACTIVITYACTIVITYACTIVITYACTIVITY

Number Counter using Quarky

Let’s create a code to print 1-9 number on the

LED of Quarky using the logic of while loop.

11

• In order to start counting from 1 to 9 and display the same on Quarky’s display,
we will be writing the code using while loop as follows:

• showtext() function is used to display the required text on Quarky’s
display in the required color.

Let’s Code

12

while i <= 9:

quarky.showtext(str(i), [0, 225, 225])

time.sleep(1)

i = i + 1

showtext([1],[2])
[1]:Char-TEXT="A" , [1]:((A-Z),(0-9))
[2]:Num_Array-COLOR=[R,G,B] ,[2]: (R-(0-255),G-(0-255),B-(0-255))
Number:(R,G,B)

sprite = Sprite('Tobi')

quarky = Quarky()

import time

quarky.setbrightness(15)

i = 1

Count from 1 to 9

while i <= 9:

quarky.showtext(str(i), [0, 225, 225])

time.sleep(1)

i = i + 1

quarky.cleardisplay()

(1-9) Number Counter

13

Output

14

sprite = Sprite('Tobi’)

import time

Instantiate the quarky object

quarky = Quarky()

i = 9

Set the brightness level

quarky.setbrightness(15)

Count from 9 to 1

while i >= 1:

quarky.showtext(str(i), [0, 225, 225])

time.sleep(1)

i = i – 1

quarky.cleardisplay()

(9-1) Number Counter

15

Output

16

sprite = Sprite('Tobi’)

import time

Instantiate the quarky object

quarky = Quarky()

i = 1

Set the brightness level

quarky.setbrightness(15)

Count from 1 to 9

while i <= 9:

quarky.showtext(str(i), [0, 225, 225])

time.sleep(1)

i = i + 1

quarky.cleardisplay()

time.sleep(4)

i = 9

Set the brightness level

quarky.setbrightness(15)

Count from 9 to 1

while i >= 1:

quarky.showtext(str(i), [0, 225, 225])

time.sleep(1)

i = i - 1

quarky.cleardisplay()

Number counter using quarky(Final Code)

17

• First, we will create a step creates a variable called sum and sets it to 0. This
variable will be used to keep track of the total age of all the students.

• Then the user to enter the number of students, reads the input as a string, and
converts it to an integer using the int() function. The resulting integer is stored in
the variable num.

• Then we will simply print out a message to the user to prompt them to enter the
age of each student.

AVERAGE AGE

18

#Create a sum variable

sum=0

#Take input from the user

num=int(input("Enter how many students: "))

• Furthermore, we use main loop of the program. It initializes a counter variable i
to 0 and repeatedly loops through the following steps until i reaches the value of
num: Reads the user input as a string using the input() function.

• Converts the input string to a number using the eval() function (which can
handle both integers and floating-point numbers).adds the resulting number to
the sum variable.

• Then, Increments the i-counter variable by 1.”we calculate the average age of
the students by dividing the sum variable by num, and prints out the result along
with a message to the user.

AVERAGE AGE

19

i=0 #create iteration variable

while i<num:

sum+=n

i+=1

print("The average age is:", sum/num)

sum=0 #Create a sum variable

num=int(input("Enter how many students: ")) #Take input from the user

print("enter age:")

i=0 #create iteration variable

while i<num:

n=eval(input())

sum+=n

i+=1

print("The average age is:", sum/num)

AVERAGE AGE(Final code)

20

AVERAGE AGE(Final Output)

21

22

	Slide 1: Loops in Python – While Loop
	Slide 2: Topics covered
	Slide 3: Introduction to loops
	Slide 4: Introduction to Loops
	Slide 5: Increment Loops
	Slide 6: Increment Loops
	Slide 7: Benefits of Loops
	Slide 8: While Loop
	Slide 9: While Loop
	Slide 10: Output
	Slide 11: Number Counter using Quarky
	Slide 12: Let’s Code
	Slide 13: (1-9) Number Counter
	Slide 14: Output
	Slide 15: (9-1) Number Counter
	Slide 16: Output
	Slide 17: Number counter using quarky(Final Code)
	Slide 18: AVERAGE AGE
	Slide 19: AVERAGE AGE
	Slide 20: AVERAGE AGE(Final code)
	Slide 21: AVERAGE AGE(Final Output)
	Slide 22

